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Gravity waves on water of variable depth 
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Harvard University, Cambridge, Mass. 

(Received 14 May 1965) 

This is a study of the propagation of gravity waves over a basin in which the 
propagation distance is large compared with the scale of the bottom topography, 
which, in turn, is large compared with the depth. Special emphasis is given to the 
low-frequency part of the spectrum and to geometries containing a beach (see 
figure 1) because of their importance in tidal wave phenomena. Both reflexion 
phenomena and the dispersive character of the propagation are accounted for 
and the non-linear aspects of the large amplification associated with the beach 
climbing are also included. However, the analysis of problems in which the waves 
break is valid only up to the inception of breaking; post-breaking phenomena are 
not treated. 

1. Introduction 
When an underwater earthquake initiates a Tsunami which propagates across 

the ocean and is incident on continental and island land masses, the encroachment 
of the water varies greatly from place to place and depends strongly on the source 
location. In order to identify the important characterizing features which deter- 
mine that encroachment, several questions must be answered. In  particular, one 
needs a theory for the propagation of surface waves which can account for the 
non-linear effects which are important as the waves enter shallow waters; it must 
be valid for that range of wavelengths which plays a dominant role in the 
encroachment; and it must be applicable for very general variations in bottom 
topography whose size is of the order of the average depth and whose typical 
lateral scale, a-l, is large compared with that depth. 

Finally, the description of the waves to which the theory leads must be 
uniformly interpretable over propagation distances which are large compared 
with a-l. 

In  this paper we develop theories which can provide each of these require- 
ments. In  $ 2  we treat an idealized problem which allows us to identify the 
important wavelengths and to introduce the appropriate analysis of the non- 
linear effects. In  $ 3, we consider the particular bottom topography which varies 
only with the co-ordinate in the propagation direction. In  $ 4  we generalize 
the theory of $ 3  to topographies varying with both horizontal co-ordinates, 
and in $ 5  we modify $ 4  to rectify a difficulty which is best identified at  the 
end of $4. 

It is widely known and recorded that, when frictional mechanisms and surface 
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tension are ignored, surface waves on an incompressible fluid are consistent with 
a theory in which? 

Qk,, + $&, + &,. = 0 in R, (1.1) 
?z.grad$’=O on rl, (1.2) 

$;+ +vz + g y  = 0 on y = y(x’, z‘, t ) ,  (1.3) 
and rt = &’, - y,, $;, - yz. $I on y = ? ( X I ,  z‘, t).  (1.4) 

In these equations, the particle velocity is V = grad 4’; x’ and z’ are horizontal 
eo-ordinates; y is the vertical co-ordinate; ?z is the unit normal to the surface 
(see figure 1);  g is the acceleration of gravity; y is the displacement of the free 
surface from its disturbance-free location at y = 0; and R is the region occupied 

FIGURE 1. Geometry of the general propagation problem. 

by the fluid a t  any time t. It will be convenient to measure the co-ordinates in 
units of the distance B, shown in figure 1, and, when t is measured in the units 
to = (Big)+, g is replaced in equation (1.3) by the number unity. In  such units, the 
bottom is located at  y = - b(ax’, ad) = - b(P, y )  where a < 1 is so chosen that 
6, and 6 ,  are of order unity. (We have already implied that b is of order unity.) 
With this notation,$ equation (1.2) becomes 

#;+ab,$L,+ab,$; = 0 on y = -b. (1.5) 

When y, yzt and yo. are each small compared with unity, and v = I;ijl is also small 
compared with unity, the governing equations become linear and, in particular 
(with g = I ) ,  equations (1.3) and (1.4) can be reduced to 

$h(X‘ ,  0, z’, t )  + $& (XI, 0, z’, t )  = 0, (1.6) 
where y(x’, x ’ ,  t )  = $i(X’,  0, z’, t ) .  (1 .7 )  

An alternative approximation which has received some study (Stoker 1948; 
Carrier & Greenspan 1958), is a ‘shallow water theory’ which is useful when the 
lateral scale of the phenomenon is large compared with the depth. The equations 
of that theory take the form 

and 

where u and w are the components of V (independent of y) in the x’ andz’ directions. 
t For the analyses in this paper we adopt a ‘flat earth’ approximation which is inade- 

quate for an accurate description of Tsunami propagation over large distances ; this limita- 
tion does not affect the character of the waves and the techniques of $0 3 , 4 , 5  can be readily 
modified to include such effects. Ordinarily, however, the effect of the curvature of the 
earth can be approximated adequately by introducing correction factors derived from 
simple variable-width-channel considerations. 

$ We shall find it necessary to modify this notation only in $ 5 .  
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In a typical Tsunami the lateral scale of the important waves is of the order of 
or larger than the depth, B, and the vertical displacement over most of the 
trajectory is at  most a few feet; accordingly, we shall use the linear theory to 
describe the propagation over the deep ocean and shall couple the implications of 
that theory with the non-linear model (equations (1.8)) only in those shallow 
regions where the wave has been so amplified that such a treatment is necessary. 

A 

FIGURE 2. Geometry for the analysis of 3 2. 

2. A preliminary propagation problem 
When a vertical motion of the boundary along A 0  of figure 2 produces a wave 

which propagates to the right, the height to which the wave climbs on the sloping 
'beach ' is much greater than the amplitude of the wave at  xo. However, when the 
wave amplitude in 0 < x < x,, issmsll comparedwith the depth, the propagation in 
that region can be described by the conventional dispersive linear theory in which 
equations (1.1) and (1.6) are valid and in which equations (1.5) and (1.3) are 
modified to read 

$Jx, - b, t )  = the imposed boundary motion, (2.1) 

and r(x, t )  = A(X, 0, t ) .  (2.2) 
Here, we have dropped the primes on $ and x (we need that notation only for 

the more general geometry) and b is the constant, b = 1, 
In  the region, xo < x < maximum penetration of wave, the non-linear shallow 

water theory of Carrier & Greenspan (1958) should suffice for the purposes of this 
section. We examine its general adequacy more critically, later. In  that theory, 
solutions of equations (1.8) are provided by the formalism whose equations are: 

(c$A7- @AA = 0,  (2.3) 

where u = x-component of velocity = @Jc8*, (2.4) 
x - x1 = ljf,/48 - @/I6 - ~ ~ 1 2 8 ,  12.5) 

A )  = - gu2, tot = &A - up*. (2.61, (2.7) 

In  these equations each variable (including the wave amplitude T , I ' ( ~ , A ) )  is 
measured in the same units as in the linear theory.? Any solution of equation (2.3) 
for which the Jacobian a(x, t)/a((r, A )  is positive in c > 0 will have a meaningful 
interpretation. 

The two regions (x < 2, and x > xo) are easily coupled because, whenever the 
wave amplitude is so small a t  xo that the linear theory is acceptable in x < x,, it is 
also true that, near xo in the non-linear theory, 

(2.8) 
and to& N *A. (2.9) 

x-xl 2: --L 
1 6V27 

t Equations (2.4) ...( 2.8) differ from thoso listed in Carrier & Greenspan (1958) only 
because, in that paper, a different set of units was adopted. 
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Thus, we need only require that the wave proceeding to the right in x > xo 
according to equations (2.3) ...( 2.7) have the same amplitude r(x,t) at xo as that 
proceeding to the right in x < xo according to the linear theory. The same state- 
ment holds for the reflected wave proceeding to the left but we shall not want to 
describe that wave in x <: xo anyway. This matching of 7 is equivalent to the 
adoption of a transmission coefficient of unity for waves proceeding through xo. 
Except €or waves of very great wavelength, the actual transmission coefficient 
will be very close to unity for slopes 8 such that 8 < 1. The reflexion process will be 
discussed further in 3 3. 

Since we shall be interested primarily in the ratio &,,x(O, A)/~max(xO, t )  the use 
of a one-dimensional theory in x < xo is fully acceptable even when the boundary 
disturbance does not extend over - 00 < z’ < GO. For a given surface motion on 
an area A’ along OA,  the wave magnitude at xo will be exaggerated by the one- 
dimensional theory but the wave-form will be no less realistic than that given by 
a two-dimensional theory. Furthermore, the amplitude exaggeration can be 
corrected approximately by reducing the prediction at  and beyond x = x,, by the 
factor x$A’-i, where A’ is the area over which the wave was initiated. 

Consider now the motion in x < x,, which is instigated by the bottom motion 

(2.10) i 
in t < 0, 

&(x, - 1, t )  = 0 in x > 0, r aeazc2te-Cf in x < 0, t > 0. 

The exponential forms are chosen purely for convenience. Note particularly that 

and 

(2.11) 

(2.12) 

These are useful in what follows, especially in the limit a --f 00, c --f GO. We consider 
the effect of other initiating ground motions in 9 3. 

Using the Laplace transform in t and the Fourier transform? in x (as though 
no change in geometry occurred at xo), equations ( l . l ) ,  (1.6) and (2.2) become 

(2.13) 

(2.14) 

(2.15) 

and the surface displacement is given by 

7(E,4 = s$(fl, 0,s). (2.16) 

The particular form used in equation (2.10) has now accomplished its purpose 
(no non-homogeneous terms in equations (2.14) and (2.16)) and it now simplifies 

r m  f rn 
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things if we confine our attention to the case c + co, a -+ co so that equation (2.15) 
becomes - 

&(E, - 1,s) = 1. (2.15 a)  

The corresponding solution of equation (2.13) is 

- ' = 5(s2 cosh 6 + 5 sinh 5) ' 
- (6 cosh (y - s2 sinh Ey) 

and, according to equation (2.16), 

(2.17) 

(2.18) 

Inversion of the Laplace transform over s gives 

q*(& t )  = cos Ctf (Ell sech 5, (2.19) 

where q* is the Fourier transform with regard to x of q(x, t ) ,  so that 

and where f (5) = (E;tanhE)4. 

equation (2.8) 

We also have from (2.20) and (2.6) that, for the sloping beach theory, the wave 
height at x, is 

We now turn to the sloping beach theory and note that, at  x,, according to 

a(xo) 2: 4(x, - xo)$ = 40-9 = L. (2.21) 

(2 .22)  

and the solution of (2.3) which is bounded a t  the origin (a = 0 )  and obeys the 
boundary condition at z, is 

For all but small 6 (in fact, whenever L f (E)/20* > 3) the Hankel function can 
be replaced by its asymptotic approximation and we write 

where it is understood that the integral is to be evaluated by the method of 
stationary phase, where we regard x,, t and L as large parameters, and where it is 
understood that the answer is inaccurate for any values oft for which the saddle 
points are so close to the origin that the Hankel function is not well approximated 
by this procedure. The result given by the stationary phase calculation is 
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where the saddle points & z are the roots of 

f ’ ( ~ )  = 2x0 6 i / ( A  - L). 

This method will give a good approximation to  the maximum penetration 
whenever the value of 6 for which xo[t-f(<)/f’([)] = - in is such that our approxi- 
mation to the Hankel function is a good one. That is, equation (2 .25 )  will estimate 
the penetration reliably for all configurations in which 8 < (xo)-*. For such 
configurations, the penetration is given by 

The wave height a t  xo as described by equation (2.22) has the uniform asymp- 
totic description (see Appendix) : 

(2.26) 

where J(p) = J&p) + J-+(p), and where 2 is the positive root of f ’(2) = xo/t. 
For values of t  such that Z < 1, equation (2.26) can also be written 

(2.26~) 

where p = XO{f(Z)/f’(Z) - z>. 
The maximum value of as given by equation (2.26~) is about 0-33xi5 and 

the amplification provided by the sloping shelf is 

This ratio is relevant when the initiation of the wave is provided by an upward 
motion of the bottom surface; when a downward motion produces the wave the 
relevant amplification factor is the ratio of the negative maxima a t  CT = 0 and a t  
5 = xo. For that situation, 

Clearly, some of the amplification associated with large Tsunami run-up can be 
accounted for without regard to the effects of bottom topography in x < xo and 
without regard to dissipative mechanisms. 

To calculate the details of the wave-form, one should choose Z (or z )  as an 
independent parametric variable and use the equation defining 2 (or x )  to find the 
corresponding value oft (or A) .  Equations (2.25) and (2.26) can then be invoked to  
complete the parametric description of the wave height as a function oft. Without 
doing any of this, however, we can see that the lateral scale of the head wave is 
identified by the position of the saddle point corresponding to the maximum wave 
height. At xo this says that wave-numbers of order x;) are most important. Thus, 
the lateral scale is several depths and the use of shallow water theory in x > xo 
provides a very reasonable approximation. I n  subsequent sections, however, 
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we shall see that the coupling of the linear and non-linear theories can be accom- 
plished at a shallow part of the shelf; thus, we need no further error estimate for 
this preliminary study. 

In  the remaining sections of this paper it will not be possible to use, in a direct 
way, the Fourier transform with regard to x. Instead, we shall study the propa- 
gation of waves of the form? xr(x‘ ,  y, a, w )  e-iwt and synthesize over w when we 
have found x‘ so that $’ is described by 

(2.27) 

To do this we must have a specification of ~ ’ ( 0 ,  y,a,w). To obtain this initial 
condition for the wave whose initiation is described by equation (2.10), we invert 
equation (2.17) over 6; that is, we write (with s = - i w )  

x’(0, Y, a, w )  = ( - Sm $eirx’dc) . (2.28) 
2n --m x‘=0 

The path of integration must pass below to(@), the positive real root of 

csinh c-  w2 cash[= 0,  (2.29) 

and above the point - to(@) so that equation (2.27) will describe waves which are 
propagating away from the origin. The residues from the other poles of $ produce 
contributions to x‘ which decay exponentially in x’ and we ignore them. Thus, we 
obtain 

5 (2.30) 
- 2i cosh [to( y + l)] cos to X’ 

____- G =  to + sinh to cosh to 
where G is the integral of (2.28) for any x’. In  particular, the contribution at  
x’ = 0 of the wave proceeding to the right in equation (2.30) is 

(2.31) 

If one calculates 7 from equation (2.30) by inverting over w and using equation 
(2.16), one recovers the description of 7 implied by equation (2.20). Thus, the 
neglect of the non-propagating modes (i.e. the ignored residues of equation (2.28)) 
in obtaining equations (2.30) and (2.31) is fully justified; we shall use equation 
(2.3 1) as the boundary condition on 2’ at x’ = 0 throughout the following analysis. 

An alternative study of the waves which prevail in x < xo can be found in 
Kajiura (1963). 

3. One-dimensional bottom topography 
Figure 1 depicts the geometry appropriate to this section. The topography, b, 

is a function of /3 only, and, in accord with the remarks in 8 2, we want the solution 
of equations ( l . l ) ,  (1.5) and (1.6) for which 

and 

t The arguments of x’ will differ in different sections according to the demands of the 
topography. 
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In  order to obtain a reasonably simple description of such waves which is 
readily interpreted for large X I ,  we must take advantage of the fact that a -g 1 
and of the two lateral scales which will arise, one associated with the wavelength 
of the wave and one associated with the topography. Accordingly, we anticipate 
(see Mahony 1962) that i t  will be useful to define a new potential, x ,  in the form 

x’ = x (2, Y, P, a, @), (3.3) 

where x is a co-ordinate defined by 

2 = / o x ’ k ( W ,  ax’!) dz”. (3.4) 

We shall deduce later what k must be. 

(1.6) and (3.2), we obtain 
When we substitute equations (3.1), (3.3) and (3.4) into equations (l.l),  (1.5), 

x y y  + k2Xxx + akp x x  + 2kax2$ + a 2 x p p  = 0, (3.5) 

(3.6) 

= a b g ( k x x  + axB) on y = - b, (3.7) 

with xu = w2x on y = 0, 

and 

We seek that function x which obeys equations (3.5) to (3.8) as though p bore no 
relation to a’; when x has been found, the solution of the original problem is given 
by x ( x ,  y, ax‘, 01, w ) .  

The most convenient description of x is given by the perturbation series 

x = X ( O ) ( X ,  y, /3, w )  + a p  (z, y, p, w )  + ... (3.9) 

When we defined x in equation (3.4) we anticipated that k should be a function 
so that, when equation (3.9) is substituted into equation ( 3 4 ,  only of w and 

we obtain 
(3.10) 

Equation (3.6) becomes, for all n, 

and equation (3.7) becomes 

on y = -b (P) .  

x p  = 0 

x$) = - b  

Thus, 

............ I 

x ( O )  = A(O)(P) cosh [ ~ k ( y  + b ) ]  eiKx, 

(3.13) 

(3.14) 

and (because of equation (3.12)), KIC is taken as the real positive (negative) root of 

~k tanh (Kkb) = w2, (3.15) 

in order that, when w is positive (negative), equation (3.14) will describe a wave 
proceeding to the right. 
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We also note that Ao(0) is determined by the initial condition at x' = 0. Using 
the wave initiation mechanism of 3 2, we have (from equation (3.8)) 

A(O'(0) = -i/([o+sinh[o cosh[o). (3.16) 

and to choose k ( P , o ) ,  we must study the equations which To find 
determine x(l). Equations (3.11), (3.12) and (3.13) imply that 

(3.17) 

(3.18) 

(3.19) 

In  equation (3.17), the term 2kxE' will contain the factor K~ x eix and, if K is not 
independent ofj?, the perturbation series for x will be of the form 

m - 
x = eix C an(@, ...) (czx)n. 

n=O 

When ax 1, this is a useless description and our choice of k must help to avoid 
such a description. Accordingly, we choose k ( P , w )  to be such that K = 1; this 

, , \ \\\;\\i/p\,\\\;,\\\, 
I I I I 

I I I 

x3 x4 x5 

FIGURE 3. An idealized geometry which is useful in calculating the reflexion and 
transmission properties for the topography in z2 < x' < x6 of figure 1. 

choice and the sentence containing equation (3.15) determine k uniquely. Using 
this choice, equation (3.17) becomes 

$;+k2$!L = eix{-ik8A(o)coshk(y+b)-2ik[A$')coshk(y+b) 

+ A(O)[kF(y + b )  + kb,] sinh (y + b)  k ] }  

= - i k  e i x f ( y  -+ b ) ,  say. (3.20) 

Equation (3.19) becomes 

$yl)(x, - b ( p ) , p , w )  = -ikbaA(o)eiz. (3.21) 

To avoid secular terms (i.e. terms like xn eix), we insist that 

x(l) = F(y, p, w )  eix. (3.22) 

The most general solution of (3.20) which has this form and which obeys 

F = - i  /o'sinh[k(y-y')] f ( y ' +  b)dy'+A(1)( /3)cosh[k(y+b)];  (3.23) 
(3.18) is 

this function F also obeys (3.21) only if 

IOb [ (4 Ace) + 2A?)] cosh2 k p  +A(@( kt8p + khB) sinh 2kp d p  = - bB A(*). (3.24) 1 
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That is, 

A@)(@) = A(O)(O) [2k(O,w) + sinh2Ic(O,w)]/[Bk(/3,w)b(/3) + sinh2k(P,o)b(/3)]*. (3.25) 

Thus, using x ( O )  as a uniformly valid approximation to x (and hence to x r ) ,  
equations (2.27), (3.14)) (3.16) and (3.25) define $’ without ambiguity. In  
particular, the surface displacement is given (using equation (1.7)) by 

(3.26) 

m 

y(x’, t )  N wA(O)(ax‘, w )  cosh (Icb) exp k(ax”, w )  dx” - iwt  
2n --m 

Again, the integral of equation (3.26) is most readily evaluated by a method of 
stationary phase. We define, for brevity, 

(3.27) 

and we note that, for each large x’ and t ,  the integrand of equation (3.26)) con- 
tributes effectively to the integral only near the saddle points w which are the 

Dw(Xr, 0) - t = 0. (3.28) 
roots of 

The symmetry in the definition of k implies that, for each x‘ and t ,  there are two 
such saddle points (wl  = - w2) .  Accordingly, the development in the Appendix 
is again appropriate and 7 is given by 

2 - N .$ 
y - ~ ~ A ( ~ ) ( a x ’ ,  wo) cosh [bIc(ax’, wO)]  (iy-) J (  - N ) ,  

4 3  
(3.29) 

where 

and where wo is the positive root of equation (3.28). For wo < 1, equation (3.29) 
can also be written 

2li = D(x’, wo) - two, N” = Dow(xr, wo),  

(3.30) 

Despite the tedious calculations which would be needed to find the wave-form 
y for most values of xr and t ,  a very simple recipe arises from equation (3.30) when 
the head wave is near x‘ = xo. As we saw in 9 2, the saddle points corresponding to 
the head wave description lie very close to the origin (i.e. wo < 1) and equation 
(3.30) is very well approximated by 

7 N 3-*H* J ( H ) / X i  2bi, (3.31) 

where 

- H = W o X l + & o ~ X 2 - W o t  

and wo (the positive saddle point) is given by 

w; = 2(t - XJX,. 

The largest positive and largest negative values of y are 

ymax N 0*33(x2)-4 and ( -y)max N 0.25(X2)-*. 
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The implications of equation (3.31) are these: 

for which, in particular, b(0)  = b,, b(ax,) = b,, the amplitude ratio q(xo)/v(0) is 
When a wave propagates over a basin for which the bottom lies at b(crx), and 

q(xo)/q(0) = (bo/b,)i ( ~ o x u b f r ~ c r x ’ ~ ) ~ x ’ ~ ) - ~ .  

The first factor, which is frequently called Green’s formula, is independent of the 
topographical details and depends only on the initial and final depths; the second 
factor arises from the dispersion of the wave and cannot differ greatly from (xo)-B 
even when the depth undulates significantly along the trajectory. 

The rejlexion process. The foregoing technique does not provide for a descrip- 
tion of the effects of reflexions nor, in $ 2 ,  was the reflexion at  x,  taken into 
account. However, Kajiura (1961) has discussed the manner in which such 
reflexions can be calculated. He notes, in particular, that the reflexion coefficient 
associated with a given depth transition is very small except in that part of the 
spectrum for which the wavelength is very large compared with the width of the 
transition zone; even in that part of the spectrum the reflexion is small unless the 
depth ratio associated with the transition differs greatly from unity. He also notes 
that the transmission coefficient differs significantly from unity in a way which is 
even less sensitive to changes of depth. 

Accordingly, we could expect in studying the configuration of figure 1, for 
example, that reflexions would be important only in x2 < x’ < x5 and at  x’ = x, 
(the reflexion in x’ > x,, is included in the sloping beach analysis of Q 2 ) .  These 
reflexion processes can be studied individually as follows. 

When the incident wave at xo has the spectrum? 

xi = A(@) exp {ix(x’, w )  - ix(x,, o)}, 

only the long waves will be affected by reflexion and, near x,, xi can be approxi- 
mated by xi N A ( @ )  exp {io(x’ - x,)}. 

The spectrum of the wave system, including the reflexions, is 

x1 N A ( w )  exp {iw(x’ - x,)} + B(w) exp { - iw(x’ - z,)} in x’ < x,. 

In x’ > x, (but not too close to x’ = x,) 

$, = C ( W )  J0[2w(x, - x’)4/84] 

and, when we require that 7 and qx be continuous at  x’ = x,, we find that 

C ( o ) / A ( w )  = [J0(2w/8) +i&(2w/8)]-’. 

Thus, for example, when reflexion at x,, is taken into account in the problem of tj 2 ,  
equation (2.23) is replaced by 

t By EL spectrum, x, we mean, merely, $I‘ = J 1, x e-iutdw. 
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Since Jo(z) + i J i ( z )  is asymptotically equivalent to H t ) ( z )  (and approximates 
it well whenever z > 4) we see that the reflexion at xo is of interest only for very 
long waves. We also note that the asymptotic recipe given by equation (2.25) 
overestimates the contribution of the very small o part of the spectrum; this may 
be one of several reasons that, in many Tsunami observations, the earliest wave 
does not have the greatest encroachment. 

To describe the implications of the presence of the ridge in x2 < X I  < xg (see 
figure I), one can use the same kind of analysis. It will suffice to approximate the 
configuration by figure 3 and to apply in each of the regions I, . .., V, the shallow 
water approximation just used. The boundary conditions a t  each of x2, x3, . . . , 
should require continuity of 7 and yz,; the result will give an explicit relation of 
the form (3.32) 

where the subscript i denotes that part of the wave which is moving to the right 
(i.e. F is the transmission coefficient of the transition). This equation can be used 
as a ‘boundary condition ’ to join the solution in X I  < x2 to that in X I  > x5. 

The procedure and results are given for certain geometries by Kajiura and we 
will not carry out the details here. We note again, however, that the ridge in 
zz < x’ < x5 in figure 1 will transmit toward xo a wave from which much of the 
low-frequency content has been depleted. 

Alternative initial motions. The initiating ground motion of $ 2  is not parti- 
cularly realistic, but the effect of other motions is easily taken into account. 
Suppose that, as in the Alaskan earthquake of 1964, the ground motion which 
initiates the water wave has no net vertical displacement. Such a motion can be 

instead of equation (2.10). This initial condition has the transform 

(3.33) 

(3.34) 

and, when thisis usedinsteadofequation (2.15a), thefunction$givenbyequation 
(2.17) is modified only in that the right side of equation (2.17) is multiplied by the 
right side of equation (3.34). Thus the description of 9(x,  t )  given in Q 2 is ‘modu- 
lated’ by the temporal spectrum of T ( t )  and the spatial spectrum of X ( x ) .  The 
small low-frequency (long wavelength) content implied by the form of X(t;)  and 
the low-frequency content of F(s)  could both contribute in an important way to 
the observation mentioned earlier that the first wave is not always that with the 
greatest encroachment. 

4. Two-dimensional bottom topography 

propagate over a bottom described by 
We turn now to a study of waves which are initiated as in $5 2 and 3 but which 

y = b(ax’, az‘) = b(P, 7). 

If we anticipate for the moment that the propagation will occur primarily in 
the X I  direction, we must also anticipate that the wave can be described by 
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equations (3.1) and (3.3) except that x’ and x will depend on z‘ but only through 
a dependence on y .  Thus, in equation (1.5) (the only equation through which the 
bottom topography enters the analysis of $3)  the final term ab, $:, can be written 
a2b, $; and nowhere in the analysis of 0 3 will any modification of the procedure 
be implied. Thus equations (2.27), (3.14), (3.16), (3.25) and (3.26) provide azero- 
order description of the wave propagation. 

However, there i s  a modification in the interpretation and in the uniformity of 
that description! It is implicit in equation (3.15) (where we still insist that K = 1) 
that, since b = b(P, y ) ,  k depends on y (and hence z‘) as well as on p. This implies, 
in turn, that x as defined by equation (3.4) is now a function of z‘ as well as of x’. 

FIGURE 4. Successive positions of a wave crest proceeding to the right for a topography 
such that 

/ox’b(as”, yl) dx” > b(az”, y z )  dd’ when lyll > Iy21. 
!OX’ 

The irregularities in the crest loci are associated with the topographical irregularities 
whereas the systematic change in the crest curvature is associated with the systematic 
depth dependence on z’. 

In  view of this, the exponent in equation (3.26) is also a function of z’ and 
equation (3.28) becomes 

(4.1) 

This dependence on y implies that, at a given time t ,  the distance x‘ to which a 
particular wave crest (or other characterizing feature) has advanced will differ 
for different values of z‘. Figure 4 indicates the successive positions of a given 

crest for a topography in which b(ax”, y )  dx“ is an increasing function of IyI 

We call the time-dependent position of any particular wave crest X(z’, t )  and 
we note that, for topographies such as that implied by figure 4, the theory we 
have used is entirely adequate if and only if aX/az’ < 1 everywhere in the domain 
of interest. 

Conversely, if axlax’ becomes of order unity in the region of interest, it is clear 
that the theory is inadequate and that the description afforded by equation (3.26) 
is not a uniformly valid approximation. 

We can see how the non-uniformity enters the mathematical analysis by 

Dw(x‘, y, w )  - t = 0. 

for all x’. 1: 
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studying the equations governing x@)(x, y, P, y, w ) .  The difficulty arises through 
equation (1.5), whose second-order contribution (in terms of x ( O )  and ~ ( l ) )  is 

The final parenthesis of equation (4.2) will increase monotonically with x’ for 
the topography which led to figure 4 (and for many other topographies) and, 
thus, the final term of equation (4.2) is reminiscent of the x‘ eikx’ which led to the 
procedure initiated on page 11 with equation (3.3) et seq. 

To avoid the non-uniformity implicit in equation (4.2), we must make a major 
alteration in the procedure. Before doing so, however, we must emphasize again 
that the alternative procedure of the forthcoming section is neither necessary nor 
desirable in any investigation in which, over the domain of interest, the crests 
(or the ?-constant lines, etc.) are so located that 

5. An alternative treatment for two-dimensional topographies 
Suppose now that the bottom topography is described by 

Y = - WP, Y, ex’) ,  (5.1) 

where any systematic depth dependence on z‘ is identified with the dependence 
of b on ez’ and where the dependence on y is identified with the irregular aspect 
of the topography. A reasonably unpleasant illustrative example of such a 
description is given by 

b = 1 + & sin /3 sin y - t( 1 + $ sin2P) e-(cz‘)2. 

With this function, 6, the wave would be propagating along a ridge ‘centred’ on 
2’ = 0. 

Even when 8 < a, it is convenient for very large x’ to find 4‘ as follows. 
We again adopt equations (2.27) and (3.4) but, instead of equations (3.3) and 

(3.9) we must use 

and 

where z = €2‘. We must also expect that k will depend on P, y and w but, if the 
description is to be uniformly valid, k must not depend on z ;  it was through the 
dependence of k on the systematic depth variation with z’ that we found the 
troubles which necessitated this alternative treatment. 

When we substitute equations (2.27), (3.4) and (5.2) into equations (1.1), (1.2) 
and (1.6), we obtain 

x = X‘O’(X, y, z,p,y,w, e) +ax’(...) -I- ..., (5-3) 

xvv + ~ 2 x z s  + k2Xxx + a 2kxpx + k, xx + 2 E X y z :  + 2€ ky(ax“, y ,  w )  ax” 
(/OX’ 
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and, on y = -b ,  
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We insist again (in order to avoid secular terms) that x depend on x only through 
the factor eiz so that equation (5.3) becomes 

= ei”[ W(O)(y, z, /3, y, o), E )  + aW(l)(. . .) + a2. ..I. (5.7) 

Using equations (5.4), (5 .5) ,  (5.6) and (5.7), we find that W(O) must obey 

~ ( 0 )  2/11 + €2w(O)- ZI @W(O) = 0, in R, (5 .8)  

Wf)-wzW(0) = 0,  on y = 0, (5.9) 

and Wf)+ e2bz WLo) = 0, on y = - b(/3, y,x) .  (5.10) 

This is a conventional homogeneous two-dimensional problem which has many 
eigenvaluest k and eigensolutions W(O). The eigenvalues, k, will depend on p and 
y but not directly on x .  The solutions can be found when the dependence of b on z 
is specified; when E < 1 ( E  is certainly at least as small as a for oceanic problems) 
the eigenfunctions and eigenvalues of equations (5.8), (5.9) and (5.10) can be 
found easily by using a perturbation process in s. 

Each of the eigenfunctions W(O) which has a real eigenvalue corresponds to a 
propagating ‘mode’ and the combination of eigenfunctions which must be used 
is determined when the conditions at  xr = 0 are invoked. In  the early stages of 
the propagation, many eigenfunctions would be needed t o  describe the configura- 
tion (including, for example, the curved ‘wave fronts’ illustrated in figure 4) 
but, at very large x’, only the fundamental mode will contribute to the head wave 
(the other modes travel too slowly). Thus, we confine our attention to the funda- 
mental mode which we will continue to call W(O). Once we establish that equation 
(5.7) can provide a uniformly valid representation, x will be seen to be uniformly 

approximated by x = eiXW(0). 

We note that, in contrast to the remarks in 5 4, there are no terms in equations 
(5.4), (5.5) and (5.6) of the formf(x’)eix wheref(x’) increases steadily in XI. In  
particular, jox’ ky(aXn, p, 0) axrr 

and the other integrals in those equations do not ‘accumulate’ with x’; the price 
we pay for this is the necessity of solving equations (5.8), (5.9) and (5.10) instead 
of the problem of $ 3 .  

We now denote W(O) by A(O)(P, y ,  w )  do) where do) is the fundamental eigen- 
solution of equations (5.8), (5.9) and (5.10) normalized in any convenient way. 
A@) must be determined, as in 0 3, by the requirement that x ( O )  satisfy the initial 

t For many geometries the spectrum will contain both a discrete part and a continuous 
part ; this, in principle, causes no difficulty. 
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conditions and that ~ ( l )  should not contain secular terms. To assure the latter 
requirement, we write 

W(1) YY +$W(1)- 22 k2W(1) = F*, (5.11) 

where, as is dictated by equation (5.4), 

F* = 2ikW$?)+ikb W(O)+ 2sW(,'+ 2is (/oz'k"yz'', y, 0) dx'') WLo), (5.12) 

and where the integral in equation (5.12) is a function of (p, y, w ) ,  which, as we 
noted above, does not grow with x'. Por many geometries, the two last terms in 
F* are numerically negligible and can be ignored. 

We also recall that 

~ ( 0 0  + &.9,(3) - k2w(O) = AwCO) - k2w(O) = 0, (5.13) 

where A denotes the Laplace operator in y and z' (y is still treated as an inde- 
pendent parameter, of course), and we also have 

(5.14) 
WCO) - 02wW = w(1) - oZWCS = 0 on y = Y II 

w(0)+e2b2wLo)=O on y = - b ,  
and 

z G ,  on y = - b .  I 
(5.15) 

We multiply (5.11) by w(O)and (5.13) by W(l) to obtain (for channelsof finite width 
in the domain zo < z' < zl, the limits on the z' integration would be zo and xl) 

(5.16) I 
I m 

= / (1  + b,2.)-* W'O" Wy) + E2bz Wf)] dz' = J:m (1 + b,2.)-* w(O) G dz'. 
- m  

In  the line integral, S denotes distance along I? which is the curve y = - b and, 
in the subsequent integrals, each integrand is evaluated at y = - b. 

Since G contains both A:) and Ao and since P contains A$'), A$') and AO, we 
extract from equation (5.16), as a first-order linear partial differential equation 

/YW/' w(O)F*dydz' = (l+b;,)-*w(o)Gdz'. (5.17) 

In  this analysis, equation (5.17) plays exactly the role that equation (3.24) played 
in § 3. No further reduction of equation (5.17) is informative until a particular 
dependence of b on z' is adopted. Equation (5.17), together with an initial 
condition at  x' = 0 (equation (3.2) for example), completely specifies x and only 
the inversion over w remains. 

for A(o), W 

- b  - W  
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6. Discussion 
The theory of $53 and 4 can be used in a straightforward manner for any 

problem in which the topography and the propagation path length do not lead 
to highly curved crest loci. The domain covered by that theory can include much 
of the sloping shelf, where interest is usually centred. On the shallower part of the 
shelf, non-linear contributions to the dynamics become important but only where 
the water is so shallow that, in the non-linear rdgime, shallow water theory is a 
valid approximation. Thus, an easily justifiable coupling of the theories of $8 3, 
4 or 5 and the non-linear theory of $ 2  can be made, not at  xo of figure 1 but at  a 
point xz which lies to the left of x1 but far to the right of xo. If, at  such a matching 
region, the wave-fronts have a curvature which requires a two-dimensional non- 
linear shallow water analysis, the formalism of 9 2 does not suffice. For such a 
situation, the underlying ideas of $5 3-5 should allow an extension of that shallow 
water theory which would suffice. The same ideas should be applicable when the 
shelf itself has lateral ( z  co-ordinate) topographical variations but we will not 
pursue those extensions of the theory here. 

The theory of $ 5 can also be used to study the composite effects of waves which 
propagate across a deep basin and are superimposed with edge waves which 
arrive from the same source at the same time to produce large run-up. Such 
interference phenomena may be an important feature of the encroachment 
pattern, especially when the initiating ground motion is in or neltr a continental 
shelf. 

Although the foregoing techniques seem adequate for the study of the propa- 
gation of Tsunamis over the deep ocean and for the study of the run-up which 
accompanies normal incidence on a sloping beach of waves which do not break, 
there are many situations for which the foregoing study is entirely inadequate. 
Among the outstanding questions which remain unanswered and which should 
not go unmentioned are: 

(1) What is the run-up when the wave incidence is oblique? 
(2) What is the run-up when the wave breaks and a bore is formed? 
(3) How are the foregoing motions coupled to the motion in bays or harbours 

when the coast-line is not nearly straight but contains major indentations? 
(4) How can one interpret the results of model experiments in the context of 

oceanic phenomena taking account of the fact that dissipation plays a very 
disproportionate role in the comparatively small-scale experiment ? 

Until these questions can be answered quantitatively, the scientifically sound 
design of protective measures will not easily be accomplished. 

The author greatly appreciates the hospitality of the University of Western 
Australia, where this work was performed, and the support of the Guggenheim 
Foundation and a Fulbright Grant, whose generosity made this visit possible. 

Appendix 
Although the asymptotic results given in equations (2.26) and (3.29) are 

implicit in Chester, Friedman & Ursell (1957), it seems worth while to give a 
42 Fluid Mech. 24 
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simple heuristic derivation of those results and of equation (2.26a). We confine 
our attention to an integral of the type 

rw 

where h B 1, h( -2) = -h(z) and where, for IzI < 1, 

h ( z )  = a,z3/3!+a5z5/5!+ ..., 

with a3, a5, . . . == O( 1) .  We also require that, when a > 0, there are two and only 
two real values of z such that h(z) = a. The reader will see that the procedure is 
easily generalized to other integrals in which two saddle points coalesce as a 
parameter a tends to a,. 

When a > 0, an asymptotic approximation to I is 

I -  (AGzoJ‘ ~ [exp {ih(h(z,) - az,) + $in) + exp { - ih(h(z,) - az,) - tin)], (A 2 )  

where zo is the positive root of 
h’(z) = a. 

The first exponential in equation (A 2) arises via the conventional method of 
stationary phase as the contribution of the saddle point a t  z,; the second is 
provided by the saddle point a t  -zo. However, as a tends to zero for fixed A, 
f ” ( z o )  also tends to zero and equation (A 2 )  fails to provide a useful result. It is 
clear that, when a is small enough, the variation with z of the exponent in the 
integrand of equation (A 1)  is dominated near the saddle points, zi, by 

h”(zg) N h”(0) 

rather than by h“(zi). Accordingly, one wonders whether the retention of the 
effects of h“(zi) in a simple extension of the usual saddle-point method might not 
provide a result which is valid for all a: in 0 < a < co. 

The behaviour of h(z) - az is well approximated near z < zo by 

h - c ~ z  E P ( Z )  = qz,) - azo + g ( z  - z0)23 h+,) + Q [ ( X  - z0)31 hyz,). (A 4) 

When, in equation ( 1  ), h(z)  - a:z is replaced by this polynomial approximation, 
we find that 

where 
+ exp { - -;in) HP)(A)] ,  (A 5) 

A = h [h”( 4 ] 3 /  3 [A”( 2, ) ]2 .  

Using the asymptotic evaluation of the Hankel functions for large A ,  we see 
that  the Contribution IPY)(A) is provided by the saddle point a t  z = zo whereas 
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the contribution Hg)(A) is identified with the other saddle point of P(z).  Thus, the 
contribution to L and to I of the saddle point at  zo is 

Since h(z)  is an odd function of z ,  we conclude that 

I N  2ReK. (A ‘7) 

The usual error estimates indicate that 

I - 2 Re K = h-%O(I). 

For zo < 1, h(z,), h”(zo) and h”(z0) can be described by power series in zo and 
equation (A 7) can be written in the two forms 

277 
I N - [hh”(O)]-g [ Q ( z ~ ) ] * J [ Q ( x ~ ) ] ,  

36 

or I N 27~3-%?(z~)/ - & ” ( ~ o ) l ~ J ~ Q ( ~ o ) l ,  (A 9) 

where Q ( x )  = - h[h(z) - az] and J ( Q )  = J;(Q) + J-+(Q). 

Although these formulae were derived only for zo < 1, equation (A9) is 
asymptotically equivalent to equation (A 7)  for all real zo. Furthermore, the use 
of the cubic approximation 

in equation (1) when a < O(h-f) leads directly to equation (A 9) and to an error 
estimate E = O(h-%). 

Thus, the errors in equation (A 9) are of order A-3 for all a 2 0 and we see that 
equation (A 9) is a uniformly valid approximation to I .  We also see that equa- 
tion (A 8) can be used instead of equation (A 9) when a < O(h-5). 

Equations (2.26) and (3.29) are obtained when we let h = t and a = 1 - xo/t 
and when we note that, for m( -2) = m(z), 

h(x) - az 21 a3 z3/6 - 

I* = jm m(z) exp { i ~ [ ~ z ( z )  -ax]> dz  N m(zo) I .  (A 10) 
- w  
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